The Pseudomonas aeruginosa antimetabolite L -2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor

نویسندگان

  • Nelson Rojas Murcia
  • Xiaoyun Lee
  • Patrice Waridel
  • Alessandro Maspoli
  • Heidi J. Imker
  • Tiancong Chai
  • Christopher T. Walsh
  • Cornelia Reimmann
چکیده

The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA), two non-ribosomal peptide synthetases (AmbB and AmbE), and two iron(II)/α-ketoglutarate-dependent oxygenases (AmbC and AmbD). Bioinformatics analysis predicts one thiolation (T) domain for AmbB and two T domains (T1 and T2) for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala), while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu) and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD, and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed.

منابع مشابه

The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.

The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwin...

متن کامل

Mechanism of the irreversible inhibition of aspartate aminotransferase by the bacterial toxin L-2-amino-4-methoxy-trans-3-butenoic acid.

The naturally occurring toxin L-2-amino-4-methoxy-trans-3-butenoic (AMB) acid irreversibly inhibits pyridoxal phosphate-linked aspartate aminotransferase. The inhibitor is a substrate for the enzyme, and as such is converted into a highly reactive intermediate which chemically reacts with an active site residue, thus irreversibly inactivating the enzyme. Enzymological and model studies on AMB a...

متن کامل

Mechanism of the Irreversible Inhibition of Aspartate Aminotransferase by the Bacterial Toxin

The naturally occurring toxin L-2-amino-4-methoxy-trans.3-butenoic (AMB) acid irreversibly inhibits pyridoxal phosphate-linked aspartate aminotransferase. The inhibitor is a substrate for the enzyme, and as such is converted into a highly reactive intermediate which chemically reacts with an active site residue, thus irreversibly inactivating the enzyme. Enzymological and model studies on AMB a...

متن کامل

Britain Studies of Polysaccharide Fractions from the Lipopolysaccharide of Pseudomonas aeruginosa N . C . T . C . 1999 By

Two polymeric water-soluble fractions were isolated by gel filtration after mild acid hydrolysis of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 1999. The fraction of higher molecular weight retained the 0-antigenic specificity of the lipopolysaccharide and may be 'side-chain' material. This fraction was rich in N (about 10%) and gave several basic amino compounds on acid hydroly...

متن کامل

Evidence for the participation of aspartate aminotransferase in hepatic glucose synthesis in the suckling newborn rat.

Inhibition of liver aspartate aminotransferase by L-2-amino-4-methoxy-trans-3-butenoic acid in the suckling newborn rat causes a decrease in all gluconeogenic precursors from phosphoenolpyruvate to glucose and an accumulation of lactate but not of pyruvate. This suggests that the aspartate shuttle is operative and confirms the quantitative importance of lactate as a gluconeogenic precursor at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015